391 lines
9.9 KiB
C++
391 lines
9.9 KiB
C++
|
/*------------------------------------------------------------------------*/
|
||
|
/*! \file polynomial.cpp
|
||
|
\brief contains arithmetic operations for polynomials
|
||
|
|
||
|
Part of AMulet2.1 : AIG Multiplier Verification Tool.
|
||
|
Copyright(C) 2020, 2021 Daniela Kaufmann, Johannes Kepler University Linz
|
||
|
*/
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
#include "polynomial.h"
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial::Polynomial() {}
|
||
|
Polynomial::Polynomial (Monomial ** m, size_t len):mon(m), num_mon(len) {}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial * Polynomial::copy() const {
|
||
|
|
||
|
for (size_t i = 0 ; i < size(); i++) {
|
||
|
Monomial * m = get_mon(i);
|
||
|
push_mstack_end(m->copy());
|
||
|
}
|
||
|
Polynomial * out = build_poly();
|
||
|
out->set_idx(idx);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
void Polynomial::print(FILE * file, bool end) const {
|
||
|
if (size() == 0) { fputs_unlocked("0", file);
|
||
|
} else {
|
||
|
for (size_t i = 0 ; i < size(); i++) {
|
||
|
Monomial * m = get_mon(i);
|
||
|
if (i == 0) m->print(file, 1);
|
||
|
else
|
||
|
m->print(file, 0);
|
||
|
}
|
||
|
}
|
||
|
if (end) fputs(";\n", file);
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial::~Polynomial() {
|
||
|
for (size_t i = 0 ; i < size(); i++) {
|
||
|
Monomial * m = get_mon(i);
|
||
|
deallocate_monomial(m);
|
||
|
}
|
||
|
delete[]mon;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
bool Polynomial::is_constant_zero_poly() const {
|
||
|
return size() == 0;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
bool Polynomial::is_constant_one_poly() const {
|
||
|
if (size() != 1) return 0;
|
||
|
|
||
|
Monomial * m = get_mon(0);
|
||
|
if (m->get_term()) return 0;
|
||
|
if (mpz_cmp_si(m->coeff, 1) != 0) return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
int Polynomial::min_term_size() const {
|
||
|
int len = INT_MAX;
|
||
|
|
||
|
for (size_t i = 0 ; i < size(); i++) {
|
||
|
Monomial * m = get_mon(i);
|
||
|
|
||
|
int tlen = 0;
|
||
|
if (m->get_term()) tlen=m->get_term_size();
|
||
|
if (tlen < len) len = tlen;
|
||
|
}
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
// Local variables
|
||
|
static size_t size_mstack; // /< size of mstack
|
||
|
static size_t num_mstack = 0; // /< number of elements in mstack
|
||
|
static Monomial ** mstack; // /< Monomial** used for building poly
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
void enlarge_mstack() {
|
||
|
size_t new_size_mstack = size_mstack ? 2*size_mstack : 1;
|
||
|
|
||
|
Monomial** newArr = new Monomial*[new_size_mstack];
|
||
|
memcpy( newArr, mstack, size_mstack * sizeof(Monomial*) );
|
||
|
delete [] mstack;
|
||
|
mstack = newArr;
|
||
|
size_mstack = new_size_mstack;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
void clear_mstack() {
|
||
|
num_mstack = 0;
|
||
|
size_mstack = 0;
|
||
|
mstack = 0;}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
void deallocate_mstack() { delete[](mstack); }
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
bool mstack_is_empty() { return num_mstack == 0;}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
void push_mstack_end(Monomial *m) {
|
||
|
if (size_mstack == num_mstack) enlarge_mstack();
|
||
|
|
||
|
assert(m);
|
||
|
if (mpz_sgn(m->coeff) == 0) {
|
||
|
deallocate_monomial(m);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
mstack[num_mstack++] = m;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
void push_mstack(Monomial *m) {
|
||
|
assert(m);
|
||
|
if (mpz_sgn(m->coeff) == 0) {
|
||
|
deallocate_monomial(m);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (size_mstack == num_mstack) enlarge_mstack();
|
||
|
if (num_mstack == 0) {
|
||
|
mstack[num_mstack++] = m;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!m->get_term()) {
|
||
|
Monomial * tmp = mstack[num_mstack-1];
|
||
|
|
||
|
if (tmp->get_term()) { mstack[num_mstack++] = m;
|
||
|
} else {
|
||
|
mpz_t coeff;
|
||
|
mpz_init(coeff);
|
||
|
mpz_add(coeff, tmp->coeff, m->coeff);
|
||
|
deallocate_monomial(m);
|
||
|
deallocate_monomial(tmp);
|
||
|
|
||
|
if (mpz_sgn(coeff) != 0)
|
||
|
mstack[num_mstack-1] = new Monomial(coeff, 0);
|
||
|
else
|
||
|
--num_mstack;
|
||
|
|
||
|
mpz_clear(coeff);
|
||
|
}
|
||
|
} else {
|
||
|
assert(num_mstack > 0);
|
||
|
int i = num_mstack-1;
|
||
|
int cmp = -1;
|
||
|
Monomial * tmp = 0;
|
||
|
|
||
|
while (i >= 0) {
|
||
|
tmp = mstack[i];
|
||
|
cmp = tmp->get_term()->cmp(m->get_term());
|
||
|
|
||
|
if (cmp >= 0) break;
|
||
|
i--;
|
||
|
}
|
||
|
|
||
|
if (cmp == 0) {
|
||
|
mpz_t coeff;
|
||
|
mpz_init(coeff);
|
||
|
mpz_add(coeff, tmp->coeff, m->coeff);
|
||
|
|
||
|
if (mpz_sgn(coeff) == 0) {
|
||
|
for (unsigned j = i; j < num_mstack-1; j++)
|
||
|
mstack[j] = mstack[j+1];
|
||
|
num_mstack--;
|
||
|
} else {
|
||
|
mstack[i] = new Monomial(coeff, m->get_term_copy());
|
||
|
}
|
||
|
deallocate_monomial(m);
|
||
|
deallocate_monomial(tmp);
|
||
|
mpz_clear(coeff);
|
||
|
} else {
|
||
|
for (int j = num_mstack; j > i+1; j--)
|
||
|
mstack[j] = mstack[j-1];
|
||
|
mstack[i+1] = m;
|
||
|
num_mstack++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial * build_poly() {
|
||
|
Polynomial * res = new Polynomial(mstack, num_mstack);
|
||
|
clear_mstack();
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial * add_poly(const Polynomial * p1, const Polynomial * p2) {
|
||
|
assert(p1);
|
||
|
assert(p2);
|
||
|
|
||
|
size_t i = 0, j= 0;
|
||
|
|
||
|
Monomial * m1 = p1->get_mon(i);
|
||
|
Monomial * m2 = p2->get_mon(j);
|
||
|
mpz_t coeff;
|
||
|
mpz_init(coeff);
|
||
|
|
||
|
while (i < p1->size() && j < p2->size()) {
|
||
|
if (!m1->get_term() || !m2->get_term()) {
|
||
|
if (!m1->get_term() && !m2->get_term()) {
|
||
|
mpz_add(coeff, m1->coeff, m2->coeff);
|
||
|
if (mpz_sgn(coeff) != 0) {
|
||
|
Monomial * m = new Monomial(coeff, 0);
|
||
|
push_mstack_end(m);
|
||
|
}
|
||
|
m1 = p1->get_mon(++i);
|
||
|
m2 = p2->get_mon(++j);
|
||
|
|
||
|
} else if (!m1->get_term()) {
|
||
|
push_mstack_end(m2->copy());
|
||
|
m2 = p2->get_mon(++j);
|
||
|
} else {
|
||
|
push_mstack_end(m1->copy());
|
||
|
m1 = p1->get_mon(++i);
|
||
|
}
|
||
|
} else {
|
||
|
int cmp = m1->get_term()->cmp(m2->get_term());
|
||
|
if (cmp == 1) {
|
||
|
push_mstack_end(m1->copy());
|
||
|
m1 = p1->get_mon(++i);
|
||
|
} else if (cmp == -1) {
|
||
|
push_mstack_end(m2->copy());
|
||
|
m2 = p2->get_mon(++j);
|
||
|
} else {
|
||
|
mpz_add(coeff, m1->coeff, m2->coeff);
|
||
|
if (mpz_sgn(coeff) != 0) {
|
||
|
Monomial * m = new Monomial(coeff, m1->get_term_copy());
|
||
|
push_mstack_end(m);
|
||
|
}
|
||
|
m1 = p1->get_mon(++i);
|
||
|
m2 = p2->get_mon(++j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
mpz_clear(coeff);
|
||
|
|
||
|
while (i < p1->size()) {
|
||
|
push_mstack_end(m1->copy());
|
||
|
m1 = p1->get_mon(++i);
|
||
|
}
|
||
|
while (j < p2->size()) {
|
||
|
push_mstack_end(m2->copy());
|
||
|
m2 = p2->get_mon(++j);
|
||
|
}
|
||
|
|
||
|
Polynomial * p = build_poly();
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial * multiply_poly(const Polynomial * p1, const Polynomial * p2) {
|
||
|
if(!p1 || !p2) return 0;
|
||
|
mpz_t coeff;
|
||
|
mpz_init(coeff);
|
||
|
Term * t;
|
||
|
for (size_t i = 0 ; i < p1->size(); i++) {
|
||
|
Monomial * m1 = p1->get_mon(i);
|
||
|
for (size_t j = 0 ; j < p2->size(); j++) {
|
||
|
Monomial * m2 = p2->get_mon(j);
|
||
|
if (mpz_cmp_si(m1->coeff, -1) == 0 ) mpz_neg(coeff, m2->coeff);
|
||
|
else if (mpz_cmp_si(m2->coeff, -1) == 0 ) mpz_neg(coeff, m1->coeff);
|
||
|
else
|
||
|
mpz_mul(coeff, m1->coeff, m2->coeff);
|
||
|
|
||
|
if (m1->get_term() && m2->get_term())
|
||
|
t = multiply_term(m1->get_term(), m2->get_term());
|
||
|
else if (m2->get_term())
|
||
|
t = m2->get_term_copy();
|
||
|
else if (m1->get_term())
|
||
|
t = m1->get_term_copy();
|
||
|
else
|
||
|
t = 0;
|
||
|
push_mstack(new Monomial(coeff, t));
|
||
|
}
|
||
|
}
|
||
|
Polynomial * p = build_poly();
|
||
|
mpz_clear(coeff);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial * multiply_poly_with_constant(const Polynomial *p1, mpz_t c) {
|
||
|
if (mpz_sgn(c) == 0) return 0;
|
||
|
mpz_t coeff;
|
||
|
mpz_init(coeff);
|
||
|
|
||
|
for (size_t i = 0 ; i < p1->size(); i++) {
|
||
|
Monomial * m = p1->get_mon(i);
|
||
|
mpz_mul(coeff, m->coeff, c);
|
||
|
if (m->get_term())
|
||
|
push_mstack_end(new Monomial(coeff, m->get_term_copy()));
|
||
|
else
|
||
|
push_mstack_end(new Monomial(coeff, 0));
|
||
|
}
|
||
|
Polynomial * tmp = build_poly();
|
||
|
mpz_clear(coeff);
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
Polynomial * divide_by_term(const Polynomial * p1, const Term * t) {
|
||
|
assert(t->size() == 1);
|
||
|
const Var * v = t->get_var();
|
||
|
|
||
|
for (size_t i = 0 ; i < p1->size(); i++) {
|
||
|
Monomial * lm_tmp = p1->get_mon(i);
|
||
|
|
||
|
if (!lm_tmp->get_term()) continue;
|
||
|
if (lm_tmp->get_term()->cmp(t) == -1) break;
|
||
|
|
||
|
if (lm_tmp->get_term()->contains(v)) {
|
||
|
Term * t_rem = remainder(lm_tmp->get_term(), v);
|
||
|
if (t_rem) { push_mstack_end(new Monomial(lm_tmp->coeff, t_rem->copy()));
|
||
|
} else {
|
||
|
push_mstack_end(new Monomial(lm_tmp->coeff, 0));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Polynomial * p = build_poly();
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
mpz_t one;
|
||
|
mpz_t minus_one;
|
||
|
mpz_t two;
|
||
|
mpz_t minus_two;
|
||
|
mpz_t base;
|
||
|
mpz_t mod_coeff;
|
||
|
mpz_t four;
|
||
|
mpz_t minus_four;
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
void init_mpz(unsigned exp) {
|
||
|
mpz_init_set_ui(one, 1);
|
||
|
mpz_init_set_si(minus_one, -1);
|
||
|
mpz_init_set_ui(two, 2);
|
||
|
mpz_init_set_si(minus_two, -2);
|
||
|
mpz_init_set_ui(four, 4);
|
||
|
mpz_init_set_si(minus_four, -4);
|
||
|
mpz_init_set_ui(base, 2);
|
||
|
|
||
|
mpz_init(mod_coeff);
|
||
|
mpz_pow_ui(mod_coeff, base, exp);
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
void clear_mpz() {
|
||
|
mpz_clear(one);
|
||
|
mpz_clear(minus_one);
|
||
|
mpz_clear(base);
|
||
|
mpz_clear(mod_coeff);
|
||
|
mpz_clear(two);
|
||
|
mpz_clear(minus_two);
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|