#include "circuit.h" #include #include #include #include #include "assert.h" bool Circuit::local_search(std::unordered_set &faults) { //STEM_INC = 0; // 初始化并重置所有 ls 数据结构 ls_init_data_structs(); // 赋值初始权重 ls_init_weight(faults); // 随机生成初始电路 ls_init_circuit(); assert(is_valid_circuit()); printf("local search!\n"); while(true) { Gate* stem = nullptr; ll max_score = 0; std::vector stems_random; std::vector candidates; for(int i=0; iid]) { stems_random.push_back(stems[i]); } } for(int i=0; i max_score) { max_score = t_score; stem = t_stem; } if(t_score > 0) t++; if(t >= T) break; } if(max_score > 0) { // printf("FLIP: %s (+%lld)\n", stem->name.c_str(), max_score); // printf("[LS] flip: %lld, stem: %lld, fault:%lld. flip_cnt: %d, stem_cnt: %d, fault_cnt:%d\n", flip_total_weight, stem_total_weight, fault_total_weight, flip_total_cnt, stem_total_cnt, fault_total_cnt); ls_flip(stem); CC[stem->id] = 0; for(Gate* pre : stem->pre_stems) { CC[pre->id] = 1; } for(Gate* suc : stem->suc_stems) { CC[suc->id] = 1; } } else { ls_update_weight(); while(!flip_update_queue.empty()) { Gate* g = flip_update_queue.back(); flip_update_queue.pop_back(); if(!flip_need_update[g->id]) continue; flip_need_update[g->id] = false; flip_total_weight -= flip_weight[g->id]; flip_total_cnt -= 1; ls_init_stem(g); } if(stem_total_cnt == stems.size() && flip_total_cnt == 0) { printf("FIND SOLUTION!\n"); printf("[SOL] flip: %lld, stem: %lld, fault:%lld. flip_cnt: %d, stem_cnt: %d, fault_cnt:%d\n", flip_total_weight, stem_total_weight, fault_total_weight, flip_total_cnt, stem_total_cnt, fault_total_cnt); break; } std::vector candidates; for(Gate *g : stems) { if(g->isPO) continue; if(stem_satisfied[g->id]) continue; candidates.push_back(g); } if(candidates.size() == 0) { candidates.push_back(stems[rand()%stems.size()]); } Gate* pick = candidates[rand()%candidates.size()]; ls_flip(pick); CC[pick->id] = 0; for(Gate* pre : pick->pre_stems) { CC[pre->id] = 1; } for(Gate* suc : pick->suc_stems) { CC[suc->id] = 1; } printf("[UP] flip: %lld, stem: %lld, fault:%lld. flip_cnt: %lld, stem_cnt: %lld, fault_cnt:%lld\n", flip_total_weight, stem_total_weight, fault_total_weight, flip_total_cnt, stem_total_cnt, fault_total_cnt); } } static int original_faults = -1; if(original_faults == - 1) { original_faults = faults.size(); } static int pattern = 0; std::unordered_set tmp = faults; for(Fault* f : tmp) { if(f->gate->sa[f->type]) { faults.erase(f); } } if(tmp.size() == faults.size()) pattern--; printf("coverage: %.4f\tpattern: %d\tbefore: %d\tnow: %d\n", (double)(original_faults - faults.size()) / (original_faults), ++pattern, tmp.size(), faults.size()); //if(tmp.size() == faults.size()) return false; return true; } void Circuit::ls_update_weight() { //STEM_INC += 5; if(rand() % 10000 <= SP * 10000) { for(Gate* g : gates) { if(g->stem && stem_satisfied[g->id] && (stem_weight[g->id] - STEM_INC >= 1)) { stem_weight[g->id] -= STEM_INC; for(Gate* suc : g->suc_stems) { if(stem_weight[suc->id] + STEM_INC <= STEM_WEIGHT_MAX) { stem_weight[suc->id] += STEM_INC; if(!stem_satisfied[suc->id]) { stem_total_weight += STEM_INC; } } } } } } else { for(Gate* g : gates) { if(flip_need_update[g->id] && (flip_weight[g->id] + FLIP_INC < FLIP_WEIGHT_MAX)) { flip_weight[g->id] += FLIP_INC; flip_total_weight += FLIP_INC; } if(g->stem && !stem_satisfied[g->id] && (stem_weight[g->id] + STEM_INC < STEM_WEIGHT_MAX)) { stem_weight[g->id] += STEM_INC; stem_total_weight += STEM_INC; for(Gate* suc : g->suc_stems) { if(stem_weight[suc->id] - STEM_INC > 1) { stem_weight[suc->id] -= STEM_INC; if(!stem_satisfied[suc->id]) { stem_total_weight -= STEM_INC; } } } } for(int i=0; i<=1; i++) { for(Gate* pre : g->suc_stems) { // int inc = 0.2 * fault_weight[pre->id][i]; // inc = std::max(1, inc); // if(g->type == Gate::NAND || g->type == Gate::NOR || g->type == Gate::NOT || g->type == Gate::XNOR) { // if(fault_weight[g->id][!pre->value] + inc <= FAULT_WEIGHT_MAX) { // fault_weight[g->id][!pre->value] += inc; // if(g->sa[!pre->value]) fault_total_weight += inc; // } // } else { // if(fault_weight[g->id][pre->value] + inc <= FAULT_WEIGHT_MAX) { // fault_weight[g->id][pre->value] += inc; // if(g->sa[pre->value]) fault_total_weight += inc; // } // } // if(fault_weight[suc->id][1] + inc <= FAULT_WEIGHT_MAX) { // fault_weight[suc->id][1] += inc; // if(suc->sa[1]) fault_total_weight += inc; // } } } if(!g->sa[0] && fault_weight[g->id][0] > 0 && (fault_weight[g->id][0] + FAULT_INC < FAULT_WEIGHT_MAX)) { fault_weight[g->id][0] += FAULT_INC; } if(!g->sa[1] && fault_weight[g->id][1] > 0 && (fault_weight[g->id][1] + FAULT_INC < FAULT_WEIGHT_MAX)) { fault_weight[g->id][1] += FAULT_INC; } } } } bool cmp(Gate* a, Gate *b) { return a->id > b->id; } void Circuit::ls_flip(Gate* stem) { stem->value = !stem->value; ls_block_recal(stem); } void Circuit::ls_update(Gate* stem) { ls_block_recal(stem); } ll Circuit::ls_pick_score(Gate* stem) { ll old_score = ls_score(); ls_flip(stem); ll new_score = ls_score(); ls_flip(stem); old_score = std::max(old_score, ls_score()); return new_score - old_score; } ll Circuit::ls_score() { //ll score = -flip_total_weight -stem_total_weight + fault_total_weight; ll score = -flip_total_weight -stem_total_weight + fault_total_weight; return score; } void Circuit::ls_block_recal(Gate* stem) { if(flip_need_update[stem->id]) { flip_need_update[stem->id] = false; flip_total_weight -= flip_weight[stem->id]; flip_total_cnt -= 1; } if(stem->cal_value() == stem->value && !stem_satisfied[stem->id]){ stem_satisfied[stem->id] = true; stem_total_weight -= stem_weight[stem->id]; stem_total_cnt += 1; } if(stem->cal_value() != stem->value && stem_satisfied[stem->id]) { stem_satisfied[stem->id] = false; stem_total_weight += stem_weight[stem->id]; stem_total_cnt -= 1; } //printf("flip: %s\n", stem->name.c_str()); //stem->value = !stem->value; if(stem->isPO) { if(stem->sa[!stem->value] == false) { fault_total_weight += fault_weight[stem->id][!stem->value]; fault_total_cnt += 1; stem->sa[!stem->value] = true; } if(stem->sa[stem->value] == true) { fault_total_weight -= fault_weight[stem->id][stem->value]; fault_total_cnt -= 1; stem->sa[stem->value] = false; } } std::queue q; std::unordered_map used; std::vector suc_stems; //printf("suc: %d %d\n", suc_stems.size(), stem->suc_stems.size()); q.push(stem); while(!q.empty()) { Gate* g = q.front(); q.pop(); used[g] = false; for(Gate* out : g->outputs) { if(out->stem) { suc_stems.push_back(out); continue; } out->value = out->cal_value(); if(!used[out]) { used[out] = true; q.push(out); } } } // sort(suc_stems.begin(), suc_stems.end(), cmp); // sort(stem->suc_stems.begin(), stem->suc_stems.end(), cmp); // assert(suc_stems == stem->suc_stems); assert(q.empty()); used.clear(); for(Gate* stem : suc_stems) { q.push(stem); if(stem->cal_value() == stem->value && !stem_satisfied[stem->id]){ stem_satisfied[stem->id] = true; stem_total_weight -= stem_weight[stem->id]; stem_total_cnt += 1; } if(stem->cal_value() != stem->value && stem_satisfied[stem->id]) { stem_satisfied[stem->id] = false; stem_total_weight += stem_weight[stem->id]; stem_total_cnt -= 1; } } while(!q.empty()) { Gate *g = q.front(); q.pop(); used[g] = false; bool right_value = (g->cal_value() == g->value); for(Gate* in : g->inputs) { in->value = !in->value; bool input_detected = (g->cal_value() != g->value); in->value = !in->value; bool sa0 = right_value && input_detected && g->sa[!g->value] && in->value; bool sa1 = right_value && input_detected && g->sa[!g->value] && !in->value; //printf("gate: %s -> %s rv: %d id: %d p:%d sa0: %d sa1: %d\n", in->name.c_str(), g->name.c_str(), right_value, input_detected, g->is_propagated(), sa0, sa1); in->sa_by_out[g] = std::make_pair(sa0, sa1); bool old_sa[2]; old_sa[0] = in->sa[0]; old_sa[1] = in->sa[1]; in->sa[0] = in->sa[1] = 0; for(Gate* out : in->outputs) { auto &p = in->sa_by_out[out]; //printf("%d %d\n", p.first, p.second); in->sa[0] |= p.first; in->sa[1] |= p.second; } if(in->stem && !in->isPI && (in->sa[0] != old_sa[0] || in->sa[1] != old_sa[1])) { for(Gate* pre : in->pre_stems) { if(flip_need_update[pre->id]) continue; flip_need_update[pre->id] = true; flip_update_queue.push_back(pre); flip_total_weight += flip_weight[pre->id]; flip_total_cnt += 1; } } if(old_sa[0] != in->sa[0]) { if(in->sa[0]) { fault_total_weight += fault_weight[in->id][0]; fault_total_cnt += 1; } else { fault_total_weight -= fault_weight[in->id][0]; fault_total_cnt -= 1; } } if(old_sa[1] != in->sa[1]) { if(in->sa[1]) { fault_total_weight += fault_weight[in->id][1]; fault_total_cnt += 1; } else { fault_total_weight -= fault_weight[in->id][1]; fault_total_cnt -= 1; } } //printf("gate: %s -> %s rv: %d id: %d p:%d sa0: %d sa1: %d\n", in->name.c_str(), g->name.c_str(), right_value, input_detected, g->is_propagated(), in->sa[0], in->sa[1]); if(!in->stem && !used[in]) { used[in] = true; q.push(in); } } } } void Circuit::ls_init_weight(const std::unordered_set &faults) { for(Gate* s : stems) { stem_weight[s->id] = 1; stem_total_weight += stem_weight[s->id]; } for(Fault* f : faults) { fault_weight[f->gate->id][f->type] = 1; } for(Gate* s: stems) { flip_weight[s->id] = 1; } } void Circuit::ls_init_circuit() { for(Gate* g : gates) { g->sa[0] = 0; g->sa[1] = 0; } for(Gate* s : stems) { s->value = rand() % 2; } for(int i=stems.size()-1; i>=0; i--) { ls_init_stem(stems[i]); } while(!flip_update_queue.empty()) { Gate* g = flip_update_queue.back(); flip_update_queue.pop_back(); if(!flip_need_update[g->id]) continue; flip_need_update[g->id] = false; flip_total_weight -= flip_weight[g->id]; flip_total_cnt -= 1; ls_init_stem(g); } } void Circuit::ls_init_data_structs() { const int MAX_LEN = gates.size() + 1; if(flip_weight == nullptr) { CC = new int[MAX_LEN]; flip_weight = new int[MAX_LEN]; flip_need_update = new int[MAX_LEN]; stem_weight = new int[MAX_LEN]; stem_satisfied = new int[MAX_LEN]; fault_weight = new int*[MAX_LEN]; for(int i=0; iid]) { flip_need_update[stem->id] = false; flip_total_weight -= flip_weight[stem->id]; flip_total_cnt -= 1; } if(stem->cal_value() == stem->value && !stem_satisfied[stem->id]){ stem_satisfied[stem->id] = true; stem_total_weight -= stem_weight[stem->id]; stem_total_cnt += 1; } if(stem->cal_value() != stem->value && stem_satisfied[stem->id]) { stem_satisfied[stem->id] = false; stem_total_weight += stem_weight[stem->id]; stem_total_cnt -= 1; } //printf("flip: %s\n", stem->name.c_str()); //stem->value = !stem->value; if(stem->isPO) { if(stem->sa[!stem->value] == false) { fault_total_weight += fault_weight[stem->id][!stem->value]; fault_total_cnt += 1; stem->sa[!stem->value] = true; } if(stem->sa[stem->value] == true) { fault_total_weight -= fault_weight[stem->id][stem->value]; fault_total_cnt -= 1; stem->sa[stem->value] = false; } } std::queue q; std::unordered_map used; std::vector suc_stems; q.push(stem); while(!q.empty()) { Gate* g = q.front(); q.pop(); used[g] = false; for(Gate* out : g->outputs) { if(out->stem) { suc_stems.push_back(out); continue; } out->value = out->cal_value(); if(!used[out]) { used[out] = true; q.push(out); } } } assert(q.empty()); used.clear(); for(Gate* stem : suc_stems) { q.push(stem); if(stem->cal_value() == stem->value && !stem_satisfied[stem->id]){ stem_satisfied[stem->id] = true; stem_total_weight -= stem_weight[stem->id]; stem_total_cnt += 1; } if(stem->cal_value() != stem->value && stem_satisfied[stem->id]) { stem_satisfied[stem->id] = false; stem_total_weight += stem_weight[stem->id]; stem_total_cnt -= 1; } } while(!q.empty()) { Gate *g = q.front(); q.pop(); used[g] = false; bool right_value = (g->cal_value() == g->value); for(Gate* in : g->inputs) { in->value = !in->value; bool input_detected = (g->cal_value() != g->value); in->value = !in->value; bool sa0 = right_value && input_detected && g->sa[!g->value] && in->value; bool sa1 = right_value && input_detected && g->sa[!g->value] && !in->value; in->sa_by_out[g] = std::make_pair(sa0, sa1); bool old_sa[2]; old_sa[0] = in->sa[0]; old_sa[1] = in->sa[1]; in->sa[0] = in->sa[1] = 0; for(Gate* out : in->outputs) { auto &p = in->sa_by_out[out]; in->sa[0] |= p.first; in->sa[1] |= p.second; } if(in->stem && !in->isPI && (in->sa[0] != old_sa[0] || in->sa[1] != old_sa[1])) { for(Gate* pre : in->pre_stems) { if(flip_need_update[pre->id]) continue; flip_need_update[pre->id] = true; flip_update_queue.push_back(pre); flip_total_weight += flip_weight[pre->id]; flip_total_cnt += 1; } } if(old_sa[0] != in->sa[0]) { if(in->sa[0]) { fault_total_weight += fault_weight[in->id][0]; fault_total_cnt += 1; } else { fault_total_weight -= fault_weight[in->id][0]; fault_total_cnt -= 1; } } if(old_sa[1] != in->sa[1]) { if(in->sa[1]) { fault_total_weight += fault_weight[in->id][1]; fault_total_cnt += 1; } else { fault_total_weight -= fault_weight[in->id][1]; fault_total_cnt -= 1; } } if(!in->stem && !used[in]) { used[in] = true; q.push(in); } } } }