atpg-ls/ls.cpp
2023-02-23 05:42:34 +00:00

501 lines
14 KiB
C++

#include "circuit.h"
#include <queue>
#include <unordered_set>
#include <unordered_map>
#include <algorithm>
#include "assert.h"
bool Circuit::local_search(std::unordered_set<Fault*> &faults) {
STEM_INC = 0;
// 初始化并重置所有 ls 数据结构
ls_init_data_structs();
// 赋值初始权重
ls_init_weight(faults);
// 随机生成初始电路
ls_init_circuit();
printf("local search!\n");
while(true) {
Gate* stem = nullptr;
ll max_score = 0;
std::vector<Gate*> stems_random;
std::vector<Gate*> candidates;
for(int i=0; i<stems.size(); i++) {
if(CC[stems[i]->id]) {
stems_random.push_back(stems[i]);
}
}
for(int i=0; i<stems_random.size(); i++) {
std::swap(stems_random[i], stems_random[rand()%stems_random.size()]);
}
const int T = 50;
int t = 0;
for(int i=0; i<stems_random.size(); i++) {
Gate* t_stem = stems_random[i];
ll t_score = ls_pick_score(t_stem);
if(t_score > max_score) {
max_score = t_score;
stem = t_stem;
}
if(t_score > 0) t++;
if(t >= T) break;
}
if(max_score > 0) {
// printf("FLIP: %s (+%lld)\n", stem->name.c_str(), max_score);
// printf("[LS] flip: %lld, stem: %lld, fault:%lld. flip_cnt: %d, stem_cnt: %d, fault_cnt:%d\n", flip_total_weight, stem_total_weight, fault_total_weight, flip_total_cnt, stem_total_cnt, fault_total_cnt);
ls_flip(stem);
CC[stem->id] = 0;
for(Gate* pre : stem->pre_stems) {
CC[pre->id] = 1;
}
for(Gate* suc : stem->suc_stems) {
CC[suc->id] = 1;
}
} else {
ls_update_weight();
while(!flip_update_queue.empty()) {
Gate* g = flip_update_queue.back();
flip_update_queue.pop_back();
if(!flip_need_update[g->id]) continue;
flip_need_update[g->id] = false;
flip_total_weight -= flip_weight[g->id];
flip_total_cnt -= 1;
ls_update(g);
}
if(stem_total_cnt == stems.size() && flip_total_cnt == 0) {
printf("FIND SOLUTION!\n");
printf("[SOL] flip: %lld, stem: %lld, fault:%lld. flip_cnt: %d, stem_cnt: %d, fault_cnt:%d\n", flip_total_weight, stem_total_weight, fault_total_weight, flip_total_cnt, stem_total_cnt, fault_total_cnt);
break;
}
std::vector<Gate*> candidates;
for(Gate *g : stems) {
if(g->isPO) continue;
if(stem_satisfied[g->id]) continue;
candidates.push_back(g);
}
if(candidates.size() == 0) {
candidates.push_back(stems[rand()%stems.size()]);
}
Gate* pick = candidates[rand()%candidates.size()];
ls_flip(pick);
CC[pick->id] = 0;
for(Gate* pre : pick->pre_stems) {
CC[pre->id] = 1;
}
for(Gate* suc : pick->suc_stems) {
CC[suc->id] = 1;
}
printf("[UP] flip: %lld, stem: %lld, fault:%lld. flip_cnt: %lld, stem_cnt: %lld, fault_cnt:%lld\n", flip_total_weight, stem_total_weight, fault_total_weight, flip_total_cnt, stem_total_cnt, fault_total_cnt);
}
}
while(!flip_update_queue.empty()) {
Gate* g = flip_update_queue.back();
flip_update_queue.pop_back();
if(!flip_need_update[g->id]) continue;
flip_need_update[g->id] = false;
flip_total_weight -= flip_weight[g->id];
flip_total_cnt -= 1;
ls_update(g);
}
static int original_faults = -1;
if(original_faults == - 1) {
original_faults = faults.size();
}
static int pattern = 0;
std::unordered_set<Fault*> tmp = faults;
for(Fault* f : tmp) {
if(f->gate->sa[f->type]) {
faults.erase(f);
}
}
if(tmp.size() == faults.size()) pattern--;
printf("coverage: %.4f\tpattern: %d\tbefore: %d\tnow: %d\n", (double)(original_faults - faults.size()) / (original_faults), ++pattern, tmp.size(), faults.size());
//if(tmp.size() == faults.size()) return false;
return true;
}
void Circuit::ls_update_weight() {
STEM_INC++;
if(rand() % 10000 <= SP * 10000) {
for(Gate* g : gates) {
if(g->stem && stem_satisfied[g->id] && (stem_weight[g->id] - STEM_INC >= 1)) {
stem_weight[g->id] -= STEM_INC;
for(Gate* suc : g->suc_stems) {
if(stem_weight[suc->id] + STEM_INC <= STEM_WEIGHT_MAX) {
stem_weight[suc->id] += STEM_INC;
if(!stem_satisfied[suc->id]) {
stem_total_weight += STEM_INC;
}
}
}
}
}
} else {
for(Gate* g : gates) {
if(flip_need_update[g->id] && (flip_weight[g->id] + FLIP_INC < FLIP_WEIGHT_MAX)) {
flip_weight[g->id] += FLIP_INC;
flip_total_weight += FLIP_INC;
}
if(g->stem && !stem_satisfied[g->id] && (stem_weight[g->id] + STEM_INC < STEM_WEIGHT_MAX)) {
stem_weight[g->id] += STEM_INC;
stem_total_weight += STEM_INC;
for(Gate* suc : g->suc_stems) {
if(stem_weight[suc->id] - STEM_INC > 1) {
stem_weight[suc->id] -= STEM_INC;
if(!stem_satisfied[suc->id]) {
stem_total_weight -= STEM_INC;
}
}
}
}
for(int i=0; i<=1; i++) {
if(!fault_weight[g->id][i]) continue;
for(Gate* suc : g->suc_stems) {
int inc = std::max(1, fault_weight[g->id][i]);
if(fault_weight[suc->id][0] + inc <= FAULT_WEIGHT_MAX) {
fault_weight[suc->id][0] += inc;
if(suc->sa[0]) fault_total_weight += inc;
}
if(fault_weight[suc->id][1] + inc <= FAULT_WEIGHT_MAX) {
fault_weight[suc->id][1] += inc;
if(suc->sa[1]) fault_total_weight += inc;
}
}
}
if(!g->sa[0] && fault_weight[g->id][0] > 0 && (fault_weight[g->id][0] + FAULT_INC < FAULT_WEIGHT_MAX)) {
fault_weight[g->id][0] += FAULT_INC;
}
if(!g->sa[1] && fault_weight[g->id][1] > 0 && (fault_weight[g->id][1] + FAULT_INC < FAULT_WEIGHT_MAX)) {
fault_weight[g->id][1] += FAULT_INC;
}
}
}
}
bool cmp(Gate* a, Gate *b) {
return a->id > b->id;
}
void Circuit::ls_flip(Gate* stem) {
stem->value = !stem->value;
ls_block_recal(stem);
}
void Circuit::ls_update(Gate* stem) {
ls_block_recal(stem);
}
ll Circuit::ls_pick_score(Gate* stem) {
ll old_score = ls_score();
ls_flip(stem);
ll new_score = ls_score();
ls_flip(stem);
old_score = std::max(old_score, ls_score());
return new_score - old_score;
}
ll Circuit::ls_score() {
//ll score = -flip_total_weight -stem_total_weight + fault_total_weight;
ll score = -flip_total_weight -stem_total_weight + fault_total_weight;
return score;
}
void Circuit::ls_block_recal(Gate* stem) {
if(flip_need_update[stem->id]) {
flip_need_update[stem->id] = false;
flip_total_weight -= flip_weight[stem->id];
flip_total_cnt -= 1;
}
if(stem->cal_value() == stem->value && !stem_satisfied[stem->id]){
stem_satisfied[stem->id] = true;
stem_total_weight -= stem_weight[stem->id];
stem_total_cnt += 1;
}
if(stem->cal_value() != stem->value && stem_satisfied[stem->id]) {
stem_satisfied[stem->id] = false;
stem_total_weight += stem_weight[stem->id];
stem_total_cnt -= 1;
}
//printf("flip: %s\n", stem->name.c_str());
//stem->value = !stem->value;
if(stem->isPO) {
if(stem->sa[!stem->value] == false) {
fault_total_weight += fault_weight[stem->id][!stem->value];
fault_total_cnt += 1;
stem->sa[!stem->value] = true;
}
if(stem->sa[stem->value] == true) {
fault_total_weight -= fault_weight[stem->id][stem->value];
fault_total_cnt -= 1;
stem->sa[stem->value] = false;
}
}
std::queue<Gate*> q;
std::unordered_map<Gate*, int> used;
std::vector<Gate*> suc_stems;
//printf("suc: %d %d\n", suc_stems.size(), stem->suc_stems.size());
q.push(stem);
while(!q.empty()) {
Gate* g = q.front();
q.pop();
used[g] = false;
for(Gate* out : g->outputs) {
if(out->stem) {
suc_stems.push_back(out);
continue;
}
out->value = out->cal_value();
if(!used[out]) {
used[out] = true;
q.push(out);
}
}
}
// sort(suc_stems.begin(), suc_stems.end(), cmp);
// sort(stem->suc_stems.begin(), stem->suc_stems.end(), cmp);
// assert(suc_stems == stem->suc_stems);
assert(q.empty());
used.clear();
for(Gate* stem : suc_stems) {
q.push(stem);
if(stem->cal_value() == stem->value && !stem_satisfied[stem->id]){
stem_satisfied[stem->id] = true;
stem_total_weight -= stem_weight[stem->id];
stem_total_cnt += 1;
}
if(stem->cal_value() != stem->value && stem_satisfied[stem->id]) {
stem_satisfied[stem->id] = false;
stem_total_weight += stem_weight[stem->id];
stem_total_cnt -= 1;
}
}
while(!q.empty()) {
Gate *g = q.front();
q.pop();
used[g] = false;
bool right_value = (g->cal_value() == g->value);
for(Gate* in : g->inputs) {
in->value = !in->value;
bool input_detected = (g->cal_value() != g->value);
in->value = !in->value;
bool sa0 = right_value && input_detected && g->sa[!g->value] && in->value;
bool sa1 = right_value && input_detected && g->sa[!g->value] && !in->value;
//printf("gate: %s -> %s rv: %d id: %d p:%d sa0: %d sa1: %d\n", in->name.c_str(), g->name.c_str(), right_value, input_detected, g->is_propagated(), sa0, sa1);
in->sa_by_out[g] = std::make_pair(sa0, sa1);
bool old_sa[2];
old_sa[0] = in->sa[0];
old_sa[1] = in->sa[1];
in->sa[0] = in->sa[1] = 0;
for(Gate* out : in->outputs) {
auto &p = in->sa_by_out[out];
//printf("%d %d\n", p.first, p.second);
in->sa[0] |= p.first;
in->sa[1] |= p.second;
}
if(in->stem && !in->isPI && (in->sa[0] != old_sa[0] || in->sa[1] != old_sa[1])) {
for(Gate* pre : in->pre_stems) {
if(flip_need_update[pre->id]) continue;
flip_need_update[pre->id] = true;
flip_update_queue.push_back(pre);
flip_total_weight += flip_weight[pre->id];
flip_total_cnt += 1;
}
}
if(old_sa[0] != in->sa[0]) {
if(in->sa[0]) {
fault_total_weight += fault_weight[in->id][0];
fault_total_cnt += 1;
} else {
fault_total_weight -= fault_weight[in->id][0];
fault_total_cnt -= 1;
}
}
if(old_sa[1] != in->sa[1]) {
if(in->sa[1]) {
fault_total_weight += fault_weight[in->id][1];
fault_total_cnt += 1;
} else {
fault_total_weight -= fault_weight[in->id][1];
fault_total_cnt -= 1;
}
}
//printf("gate: %s -> %s rv: %d id: %d p:%d sa0: %d sa1: %d\n", in->name.c_str(), g->name.c_str(), right_value, input_detected, g->is_propagated(), in->sa[0], in->sa[1]);
if(!in->stem && !used[in]) {
used[in] = true;
q.push(in);
}
}
}
}
void Circuit::ls_init_weight(const std::unordered_set<Fault*> &faults) {
for(Gate* s : stems) {
stem_weight[s->id] = 1;
stem_total_weight += stem_weight[s->id];
}
for(Fault* f : faults) {
fault_weight[f->gate->id][f->type] = 1;
}
for(Gate* s: stems) {
flip_weight[s->id] = 1;
}
}
void Circuit::ls_init_circuit() {
// for(auto pi : PIs) {
// pi->value = rand() % 2;
// }
for(Gate* g : gates) {
g->sa[0] = 0;
g->sa[1] = 0;
}
for(Gate* s : stems) {
s->value = rand() % 2;
}
for(int i=stems.size()-1; i>=0; i--) {
ls_update(stems[i]);
}
//printf("flip: %lld, stem: %lld, fault:%lld\n", flip_total_weight, stem_total_weight, fault_total_weight);
while(!flip_update_queue.empty()) {
Gate* g = flip_update_queue.back();
flip_update_queue.pop_back();
if(!flip_need_update[g->id]) continue;
flip_need_update[g->id] = false;
flip_total_weight -= flip_weight[g->id];
flip_total_cnt -= 1;
ls_update(g);
}
}
void Circuit::ls_init_data_structs() {
const int MAX_LEN = gates.size() + 1;
if(flip_weight == nullptr) {
CC = new int[MAX_LEN];
flip_weight = new int[MAX_LEN];
flip_need_update = new int[MAX_LEN];
stem_weight = new int[MAX_LEN];
stem_satisfied = new int[MAX_LEN];
fault_weight = new int*[MAX_LEN];
for(int i=0; i<MAX_LEN; i++) {
fault_weight[i] = new int[2];
}
fault_detected = new int*[MAX_LEN];
for(int i=0; i<MAX_LEN; i++) {
fault_detected[i] = new int[2];
}
}
flip_total_weight = 0;
flip_total_cnt = 0;
stem_total_weight = 0;
stem_total_cnt = 0;
fault_total_weight = 0;
fault_total_cnt = 0;
for(int i=0; i<MAX_LEN; i++) {
CC[i] = 1;
flip_weight[i] = 0;
flip_need_update[i] = 0;
stem_weight[i] = 0;
stem_satisfied[i] = 0;
fault_weight[i][0] = 0;
fault_weight[i][1] = 0;
fault_detected[i][0] = 0;
fault_detected[i][1] = 0;
}
}