138 lines
4.3 KiB
C
Raw Permalink Normal View History

2023-02-24 07:58:40 +00:00
/**
* \file strassen.h
*
* \brief Matrix operations using Strassen's formulas including
* Winograd's improvements.
*
* \author Gregory Bard <bard@fordham.edu>
* \author Martin Albrecht <M.R.Albrecht@rhul.ac.uk>
*/
#ifndef M4RI_STRASSEN_H
#define M4RI_STRASSEN_H
/*******************************************************************
*
* M4RI: Linear Algebra over GF(2)
*
* Copyright (C) 2008 Martin Albrecht <M.R.Albrecht@rhul.ac.uk>
* Copyright (C) 2008 Clement Pernet <pernet@math.washington.edu>
*
* Distributed under the terms of the GNU General Public License (GPL)
* version 2 or higher.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full text of the GPL is available at:
*
* http://www.gnu.org/licenses/
*
********************************************************************/
#include <math.h>
#include <m4ri/mzd.h>
#include <m4ri/brilliantrussian.h>
/**
* \brief Matrix multiplication via the Strassen-Winograd matrix
* multiplication algorithm, i.e. compute C = AB.
*
* This is the wrapper function including bounds checks. See
* _mzd_mul_even for implementation details.
*
* \param C Preallocated product matrix, may be NULL for automatic creation.
* \param A Input matrix A
* \param B Input matrix B
* \param cutoff Minimal dimension for Strassen recursion.
*/
mzd_t *mzd_mul(mzd_t *C, mzd_t const *A, mzd_t const *B, int cutoff);
/**
* \brief Matrix multiplication and in-place addition via the
* Strassen-Winograd matrix multiplication algorithm, i.e. compute
* C = C+ AB.
*
* This is the wrapper function including bounds checks. See
* _mzd_addmul_even for implementation details.
*
* \param C product matrix
* \param A Input matrix A
* \param B Input matrix B
* \param cutoff Minimal dimension for Strassen recursion.
*/
mzd_t *mzd_addmul(mzd_t *C, mzd_t const *A, mzd_t const *B, int cutoff);
/**
* \brief Matrix multiplication via the Strassen-Winograd matrix
* multiplication algorithm, i.e. compute C = AB.
*
* This is the actual implementation. Any matrix where either the
* number of rows or the number of columns is smaller than cutoff is
* processed using the M4RM algorithm.
*
* \param C Preallocated product matrix, may be NULL for automatic creation.
* \param A Input matrix A
* \param B Input matrix B
* \param cutoff Minimal dimension for Strassen recursion.
*
* \note This implementation is heavily inspired by the function
* strassen_window_multiply_c in Sage 3.0; For reference see
* http://www.sagemath.org
*/
mzd_t *_mzd_mul_even(mzd_t *C, mzd_t const *A, mzd_t const *B, int cutoff);
/**
* \brief Matrix multiplication and in-place addition via the
* Strassen-Winograd matrix multiplication algorithm, i.e. compute
* C = C+ AB.
*
* This is the actual implementation. Any matrix where either the
* number of rows or the number of columns is smaller than cutoff is
* processed using the M4RM algorithm.
*
* \param C Preallocated product matrix, may be NULL for automatic creation.
* \param A Input matrix A
* \param B Input matrix B
* \param cutoff Minimal dimension for Strassen recursion.
*
* \note This implementation is heavily inspired by the function
* strassen_window_multiply_c in Sage 3.0; For reference see
* http://www.sagemath.org
*/
mzd_t *_mzd_addmul_even(mzd_t *C, mzd_t const *A, mzd_t const *B, int cutoff);
/**
* \brief Matrix multiplication and in-place addition via the
* Strassen-Winograd matrix multiplication algorithm, i.e. compute
* C = C + AB.
*
* The matrices A and B are respectively m x k and k x n, and can be not
* aligned on the m4ri_radix grid.
*
* \param C Preallocated product matrix, may be NULL for automatic creation.
* \param A Input matrix A
* \param B Input matrix B
* \param cutoff Minimal dimension for Strassen recursion.
*
*/
mzd_t *_mzd_addmul(mzd_t *C, mzd_t const *A, mzd_t const *B, int cutoff);
/**
* The default cutoff for Strassen-Winograd multiplication. It should
* hold hold that 2 * (n^2)/8 fits into the L2 cache.
*/
#ifndef __M4RI_STRASSEN_MUL_CUTOFF
#define __M4RI_STRASSEN_MUL_CUTOFF MIN(((int)sqrt((double)(4 * __M4RI_CPU_L3_CACHE))), 4096)
#endif
#endif // M4RI_STRASSEN_H