743 lines
19 KiB
C
Raw Normal View History

2023-02-24 07:58:40 +00:00
/**
* \file misc.h
* \brief Helper functions.
*
* \author Gregory Bard <bard@fordham.edu>
* \author Martin Albrecht <M.R.Albrecht@rhul.ac.uk>
* \author Carlo Wood <carlo@alinoe.com>
*/
#ifndef M4RI_MISC_H
#define M4RI_MISC_H
/*******************************************************************
*
* M4RI: Linear Algebra over GF(2)
*
* Copyright (C) 2007, 2008 Gregory Bard <bard@fordham.edu>
* Copyright (C) 2008 Martin Albrecht <M.R.Albrecht@rhul.ac.uk>
* Copyright (C) 2011 Carlo Wood <carlo@alinoe.com>
*
* Distributed under the terms of the GNU General Public License (GPL)
* version 2 or higher.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full text of the GPL is available at:
*
* http://www.gnu.org/licenses/
*
********************************************************************/
#include <m4ri/m4ri_config.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if __M4RI_USE_MM_MALLOC
#include <mm_malloc.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <string.h>
/// @cond INTERNAL
#define __STDC_LIMIT_MACROS
/// @endcond
#include <stdint.h>
/*
* These define entirely the word width used in the library.
*/
/**
* \brief Pretty for a boolean int.
*
* The value of a BIT is either 0 or 1.
*/
typedef int BIT;
/**
* \brief Type of row and column indexes.
*
* This type is used for integer values that hold row/colum sized values.
*/
typedef int rci_t;
/**
* \brief Type of word indexes.
*
* This type is used for the array of words that make up a row.
*/
typedef int wi_t;
/**
* \brief A word is the typical packed data structure to represent packed bits.
*/
typedef uint64_t word;
/**
* \brief Explicit conversion macro.
*
* Explicit conversion of a word, representing 64 columns, to an integer
* to be used as index into an array. This is used for Gray codes.
* No error checking is done that the most significant bits in w are zero.
*
* \note This is a no-op. It's purpose it to track intention.
*/
#define __M4RI_CONVERT_TO_INT(w) ((int)(w))
/**
* \brief Explicit conversion macro.
*
* Explicit conversion of a word, representing 64 columns, to a BIT
* to be used as boolean: this is an int with value 0 (false) or 1 (true).
* No error checking is done that only the least significant bit is set (if any).
*
* \note This is a no-op. It's purpose it to track intention.
*/
#define __M4RI_CONVERT_TO_BIT(w) ((BIT)(w))
/**
* \brief Explicit conversion macro.
*
* Explicit conversion of a word, representing 64 columns, to an uint64_t.
*
* The returned value is the underlaying integer representation of these 64 columns,
* meaning in particular that if val is an uint64_t then
* __M4RI_CONVERT_TO_UINT64_T(__M4RI_CONVERT_TO_WORD(val)) == val.
*
* \note This is a no-op. It's purpose it to track intention.
*/
#define __M4RI_CONVERT_TO_UINT64_T(w) (w)
/**
* \brief Explicit conversion macro.
*
* Explicit conversion of an integer to a word.
*
* \note This is a no-op. It's purpose it to track intention.
*/
#define __M4RI_CONVERT_TO_WORD(i) ((word)(i))
/**
* \brief The number of bits in a word.
*/
static int const m4ri_radix = 64;
/**
* \brief The number one as a word.
*/
static word const m4ri_one = __M4RI_CONVERT_TO_WORD(1);
/**
* \brief A word with all bits set.
*/
static word const m4ri_ffff = __M4RI_CONVERT_TO_WORD(-1);
/**
* \brief Return the maximal element of x and y
*
* \param x Word
* \param y Word
*/
#ifndef MAX
#define MAX(x,y) (((x) > (y))?(x):(y))
#endif
/**
* \brief Return the minimal element of x and y
*
* \param x Word
* \param y Word
*/
#ifndef MIN
#define MIN(x,y) (((x) < (y))?(x):(y))
#endif
/**
*\brief Pretty for 1.
*/
#ifndef TRUE
#define TRUE 1
#endif
/**
*\brief Pretty for 0.
*/
#ifndef FALSE
#define FALSE 0
#endif
/**
* \brief $2^i$
*
* \param i Integer.
*/
#define __M4RI_TWOPOW(i) ((uint64_t)1 << (i))
/**
* \brief Clear the bit spot (counting from the left) in the word w
*
* \param w Word
* \param spot Integer with 0 <= spot < m4ri_radix
*/
#define __M4RI_CLR_BIT(w, spot) ((w) &= ~(m4ri_one << (spot))
/**
* \brief Set the bit spot (counting from the left) in the word w
*
* \param w Word
* \param spot Integer with 0 <= spot < m4ri_radix
*/
#define __M4RI_SET_BIT(w, spot) ((w) |= (m4ri_one << (spot)))
/**
* \brief Get the bit spot (counting from the left) in the word w
*
* \param w Word
* \param spot Integer with 0 <= spot < m4ri_radix
*/
#define __M4RI_GET_BIT(w, spot) __M4RI_CONVERT_TO_BIT(((w) >> (spot)) & m4ri_one)
/**
* \brief Write the value to the bit spot in the word w
*
* \param w Word.
* \param spot Integer with 0 <= spot < m4ri_radix.
* \param value Either 0 or 1.
*/
#define __M4RI_WRITE_BIT(w, spot, value) ((w) = (((w) & ~(m4ri_one << (spot))) | (-__M4RI_CONVERT_TO_WORD(value) & (m4ri_one << (spot)))))
/**
* \brief Flip the spot in the word w
*
* \param w Word.
* \param spot Integer with 0 <= spot < m4ri_radix.
*/
#define __M4RI_FLIP_BIT(w, spot) ((w) ^= (m4ri_one << (spot)))
/**
* \brief create a bit mask to zero out all but the (n - 1) % m4ri_radix + 1 leftmost bits.
*
* This function returns 1..64 bits, never zero bits.
* This mask is mainly used to mask the valid bits in the most significant word,
* by using __M4RI_LEFT_BITMASK((M->ncols + M->offset) % m4ri_radix).
* In other words, the set bits represent the columns with the lowest index in the word.
*
* Thus,
*
* n Output
* 0=64 1111111111111111111111111111111111111111111111111111111111111111
* 1 0000000000000000000000000000000000000000000000000000000000000001
* 2 0000000000000000000000000000000000000000000000000000000000000011
* . ...
* 62 0011111111111111111111111111111111111111111111111111111111111111
* 63 0111111111111111111111111111111111111111111111111111111111111111
*
* Note that n == 64 is only passed from __M4RI_MIDDLE_BITMASK, and still works
* (behaves the same as n == 0): the input is modulo 64.
*
* \param n Integer with 0 <= n <= m4ri_radix
*/
#define __M4RI_LEFT_BITMASK(n) (m4ri_ffff >> (m4ri_radix - (n)) % m4ri_radix)
/**
* \brief create a bit mask to zero out all but the n rightmost bits.
*
* This function returns 1..64 bits, never zero bits.
* This mask is mainly used to mask the n valid bits in the least significant word
* with valid bits by using __M4RI_RIGHT_BITMASK(m4ri_radix - M->offset).
* In other words, the set bits represent the columns with the highest index in the word.
*
* Thus,
*
* n Output
* 1 1000000000000000000000000000000000000000000000000000000000000000
* 2 1100000000000000000000000000000000000000000000000000000000000000
* 3 1110000000000000000000000000000000000000000000000000000000000000
* . ...
* 63 1111111111111111111111111111111111111111111111111111111111111110
* 64 1111111111111111111111111111111111111111111111111111111111111111
*
* Note that n == 0 is never passed and would fail.
*
* \param n Integer with 0 < n <= m4ri_radix
*/
#define __M4RI_RIGHT_BITMASK(n) (m4ri_ffff << (m4ri_radix - (n)))
/**
* \brief create a bit mask that is the combination of __M4RI_LEFT_BITMASK and __M4RI_RIGHT_BITMASK.
*
* This function returns 1..64 bits, never zero bits.
* This mask is mainly used to mask the n valid bits in the only word with valid bits,
* when M->ncols + M->offset <= m4ri_radix), by using __M4RI_MIDDLE_BITMASK(M->ncols, M->offset).
* It is equivalent to __M4RI_LEFT_BITMASK(n + offset) & __M4RI_RIGHT_BITMASK(m4ri_radix - offset).
* In other words, the set bits represent the valid columns in the word.
*
* Note that when n == m4ri_radix (and thus offset == 0) then __M4RI_LEFT_BITMASK is called with n == 64.
*
* \param n Integer with 0 < n <= m4ri_radix - offset
* \param offset Column offset, with 0 <= offset < m4ri_radix
*/
#define __M4RI_MIDDLE_BITMASK(n, offset) (__M4RI_LEFT_BITMASK(n) << (offset))
/**
* \brief swap bits in the word v
*
* \param v The word whose bits need to be reversed.
*/
static inline word m4ri_swap_bits(word v) {
v = ((v >> 1) & 0x5555555555555555ULL) | ((v & 0x5555555555555555ULL) << 1);
v = ((v >> 2) & 0x3333333333333333ULL) | ((v & 0x3333333333333333ULL) << 2);
v = ((v >> 4) & 0x0F0F0F0F0F0F0F0FULL) | ((v & 0x0F0F0F0F0F0F0F0FULL) << 4);
v = ((v >> 8) & 0x00FF00FF00FF00FFULL) | ((v & 0x00FF00FF00FF00FFULL) << 8);
v = ((v >> 16) & 0x0000FFFF0000FFFFULL) | ((v & 0x0000FFFF0000FFFFULL) << 16);
v = (v >> 32) | (v << 32);
return v;
}
/**
* \brief pack bits (inverse of m4ri_spread_bits)
*
* \param from bitstring
* \param Q array with bit positions
* \param length bitsize of the output
* \param base subtracted from every value in Q
*
* \returns inverse of m4ri_spread_bits)
*
* \see m4ri_spread_bits
*/
static inline word m4ri_shrink_bits(word const from, rci_t* const Q, int const length, int const base) {
word to = 0;
switch(length-1) {
case 15: to |= (from & (m4ri_one << (Q[15] - base))) >> (Q[15] - 15 - base);
case 14: to |= (from & (m4ri_one << (Q[14] - base))) >> (Q[14] - 14 - base);
case 13: to |= (from & (m4ri_one << (Q[13] - base))) >> (Q[13] - 13 - base);
case 12: to |= (from & (m4ri_one << (Q[12] - base))) >> (Q[12] - 12 - base);
case 11: to |= (from & (m4ri_one << (Q[11] - base))) >> (Q[11] - 11 - base);
case 10: to |= (from & (m4ri_one << (Q[10] - base))) >> (Q[10] - 10 - base);
case 9: to |= (from & (m4ri_one << (Q[ 9] - base))) >> (Q[ 9] - 9 - base);
case 8: to |= (from & (m4ri_one << (Q[ 8] - base))) >> (Q[ 8] - 8 - base);
case 7: to |= (from & (m4ri_one << (Q[ 7] - base))) >> (Q[ 7] - 7 - base);
case 6: to |= (from & (m4ri_one << (Q[ 6] - base))) >> (Q[ 6] - 6 - base);
case 5: to |= (from & (m4ri_one << (Q[ 5] - base))) >> (Q[ 5] - 5 - base);
case 4: to |= (from & (m4ri_one << (Q[ 4] - base))) >> (Q[ 4] - 4 - base);
case 3: to |= (from & (m4ri_one << (Q[ 3] - base))) >> (Q[ 3] - 3 - base);
case 2: to |= (from & (m4ri_one << (Q[ 2] - base))) >> (Q[ 2] - 2 - base);
case 1: to |= (from & (m4ri_one << (Q[ 1] - base))) >> (Q[ 1] - 1 - base);
case 0: to |= (from & (m4ri_one << (Q[ 0] - base))) >> (Q[ 0] - 0 - base);
break;
default:
abort();
}
return to;
}
/**
* \brief spread bits
*
* Given a bitstring 'from' and a spreading table Q, return a
* bitstring where the bits of 'from' are in the positions indicated
* by Q.
*
* \param from bitstring of length 'length' stored in a word
* \param Q table with new bit positions
* \param length bitsize of input
* \param base subtracted from every value in Q
*
* \returns bitstring having the same bits as from but spread using Q
*
* \see m4ri_shrink_bits
*/
static inline word m4ri_spread_bits(word const from, rci_t* const Q, int const length, int const base) {
word to = 0;
switch(length-1) {
case 15: to |= (from & (m4ri_one << (15))) << (Q[15]-15-base);
case 14: to |= (from & (m4ri_one << (14))) << (Q[14]-14-base);
case 13: to |= (from & (m4ri_one << (13))) << (Q[13]-13-base);
case 12: to |= (from & (m4ri_one << (12))) << (Q[12]-12-base);
case 11: to |= (from & (m4ri_one << (11))) << (Q[11]-11-base);
case 10: to |= (from & (m4ri_one << (10))) << (Q[10]-10-base);
case 9: to |= (from & (m4ri_one << ( 9))) << (Q[ 9]- 9-base);
case 8: to |= (from & (m4ri_one << ( 8))) << (Q[ 8]- 8-base);
case 7: to |= (from & (m4ri_one << ( 7))) << (Q[ 7]- 7-base);
case 6: to |= (from & (m4ri_one << ( 6))) << (Q[ 6]- 6-base);
case 5: to |= (from & (m4ri_one << ( 5))) << (Q[ 5]- 5-base);
case 4: to |= (from & (m4ri_one << ( 4))) << (Q[ 4]- 4-base);
case 3: to |= (from & (m4ri_one << ( 3))) << (Q[ 3]- 3-base);
case 2: to |= (from & (m4ri_one << ( 2))) << (Q[ 2]- 2-base);
case 1: to |= (from & (m4ri_one << ( 1))) << (Q[ 1]- 1-base);
case 0: to |= (from & (m4ri_one << ( 0))) << (Q[ 0]- 0-base);
break;
default:
abort();
}
return to;
}
/**
* \brief Return alignment of addr w.r.t. n. For example the address
* 17 would be 1 aligned w.r.t. 16.
*
* \param addr
* \param n
*/
#define __M4RI_ALIGNMENT(addr, n) (((unsigned long)(addr))%(n))
/**
* \brief Test for gcc >= maj.min, as per __GNUC_PREREQ in glibc
*
* \param maj The major version.
* \param min The minor version.
* \return TRUE iff we are using a GNU compile of at least version maj.min.
*/
#if defined(__GNUC__) && defined(__GNUC_MINOR__)
#define __M4RI_GNUC_PREREQ(maj, min) ((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
#else
#define __M4RI_GNUC_PREREQ(maj, min) FALSE
#endif
/* __builtin_expect is in gcc 3.0, and not in 2.95. */
#if __M4RI_GNUC_PREREQ(3,0) || defined(M4RI_DOXYGEN)
/**
* \brief Macro to help with branch prediction.
*/
#define __M4RI_LIKELY(cond) __builtin_expect ((cond) != 0, 1)
/**
* \brief Macro to help with branch prediction.
*/
#define __M4RI_UNLIKELY(cond) __builtin_expect ((cond) != 0, 0)
#else
#define __M4RI_LIKELY(cond) (cond)
#define __M4RI_UNLIKELY(cond) (cond)
#endif
/**
* Return true if a's least significant bit is smaller than b's least significant bit.
*
* return true if LSBI(a) < LSBI(b),
* where LSBI(w) is the index of the least significant bit that is set in w, or 64 if w is zero.
*
* \param a Word
* \param b Word
*/
static inline int m4ri_lesser_LSB(word a, word b)
{
uint64_t const ia = __M4RI_CONVERT_TO_UINT64_T(a);
uint64_t const ib = __M4RI_CONVERT_TO_UINT64_T(b);
/*
* If a is zero then we should always return false, otherwise
* if b is zero we should return true iff a has at least one bit set.
*/
return !(ib ? ((ia - 1) ^ ia) & ib : !ia);
}
/**** Error Handling *****/
/**
* \brief Print error message and abort().
*
* The function accepts additional
* parameters like printf, so e.g. m4ri_die("foo %d bar %f\n",1 ,2.0)
* is valid and will print the string "foo 1 bar 2.0" before dying.
*
* \param errormessage a string to be printed.
*
* \todo Allow user to register callback which is called on
* m4ri_die().
*
* \warning The provided string is not free'd.
*/
void m4ri_die(const char *errormessage, ...);
/**** IO *****/
/**
* \brief Write a sting representing the word data to destination.
*
* \param destination Address of buffer of length at least m4ri_radix*1.3
* \param data Source word
* \param colon Insert a Colon after every 4-th bit.
* \warning Assumes destination has m4ri_radix*1.3 bytes available
*/
void m4ri_word_to_str( char *destination, word data, int colon);
/**
* \brief Return 1 or 0 uniformly randomly distributed.
*
* \todo Allow user to provide her own random() function.
*/
static inline BIT m4ri_coin_flip() {
if (rand() < RAND_MAX/2) {
return 0;
} else {
return 1;
}
}
/**
* \brief Return uniformly randomly distributed random word.
*
* \todo Allow user to provide her own random() function.
*/
word m4ri_random_word();
/***** Initialization *****/
/**
* \brief Initialize global data structures for the M4RI library.
*
* On Linux/Solaris this is called automatically when the shared
* library is loaded, but it doesn't harm if it is called twice.
*/
#if defined(__GNUC__)
void __attribute__ ((constructor)) m4ri_init(void);
#else
void m4ri_init(void);
#endif
#ifdef __SUNPRO_C
#pragma init(m4ri_init)
#endif
/**
* \brief De-initialize global data structures from the M4RI library.
*
* On Linux/Solaris this is called automatically when the shared
* library is unloaded, but it doesn't harm if it is called twice.
*/
#if defined(__GNUC__)
void __attribute__ ((destructor)) m4ri_fini(void);
#else
void m4ri_fini(void);
#endif
#ifdef __SUNPRO_C
#pragma fini(m4ri_fini)
#endif
/***** Memory Management *****/
/// @cond INTERNAL
#if __M4RI_CPU_L3_CACHE == 0
/*
* Fix some standard value for L3 cache size if it couldn't be
* determined by configure.
*/
#undef __M4RI_CPU_L3_CACHE
#if __M4RI_CPU_L2_CACHE
#define __M4RI_CPU_L3_CACHE __M4RI_CPU_L2_CACHE
#else
#define __M4RI_CPU_L3_CACHE 4194304
#endif // __M4RI_CPU_L2_CACHE
#endif // __M4RI_CPU_L3_CACHE
#if __M4RI_CPU_L2_CACHE == 0
/*
* Fix some standard value for L2 cache size if it couldn't be
* determined by configure.
*/
#undef __M4RI_CPU_L2_CACHE
#define __M4RI_CPU_L2_CACHE 262144
#endif // __M4RI_CPU_L2_CACHE
#if __M4RI_CPU_L1_CACHE == 0
/*
* Fix some standard value for L1 cache size if it couldn't be
* determined by configure.
*/
#undef __M4RI_CPU_L1_CACHE
#define __M4RI_CPU_L1_CACHE 16384
#endif // __M4RI_CPU_L1_CACHE
/// @endcond
/**
* \brief Calloc wrapper.
*
* \param count Number of elements.
* \param size Size of each element.
*
* \return pointer to allocated memory block.
*
* \todo Allow user to register calloc function.
*/
static inline void *m4ri_mm_calloc(size_t count, size_t size) {
void *newthing;
#if __M4RI_USE_MM_MALLOC
newthing = _mm_malloc(count * size, 64);
#elif __M4RI_USE_POSIX_MEMALIGN
int error = posix_memalign(&newthing, 64, count * size);
if (error) newthing = NULL;
#else
newthing = calloc(count, size);
#endif
if (newthing == NULL) {
m4ri_die("m4ri_mm_calloc: calloc returned NULL\n");
return NULL; /* unreachable. */
}
#if __M4RI_USE_MM_MALLOC || __M4RI_USE_POSIX_MEMALIGN
char *b = (char*)newthing;
memset(b, 0, count * size);
#endif
return newthing;
}
/**
* \brief Aligned malloc wrapper.
*
* This function will attempt to align memory, but does not guarantee
* success in case neither _mm_malloc nor posix_memalign are available.
*
* \param size Size in bytes.
* \param alignment Alignment (16,64,...).
*
* \return pointer to allocated memory block.
*
* \todo Allow user to register malloc function.
*/
static inline void *m4ri_mm_malloc_aligned(size_t size, size_t alignment) {
void *newthing;
#if __M4RI_USE_MM_MALLOC
newthing = _mm_malloc(size, alignment);
#elif __M4RI_USE_POSIX_MEMALIGN
int error = posix_memalign(&newthing, alignment, size);
if (error)
newthing = NULL;
#else
newthing = malloc(size);
#endif
if (newthing==NULL && (size>0)) {
m4ri_die("m4ri_mm_malloc: malloc returned NULL\n");
return NULL; /* unreachable */
}
else return newthing;
}
/**
* \brief Malloc wrapper.
*
* \param size Size in bytes.
*
* \return pointer to allocated memory block.
*
* \todo Allow user to register malloc function.
*/
static inline void *m4ri_mm_malloc(size_t size) {
void *newthing;
#if __M4RI_USE_MM_MALLOC
newthing = _mm_malloc(size, 64);
#elif __M4RI_USE_POSIX_MEMALIGN
int error = posix_memalign(&newthing, 64, size);
if (error) newthing = NULL;
#else
newthing = malloc(size);
#endif //__M4RI_USE_MM_MALLOC
if (newthing==NULL && (size>0)) {
m4ri_die("m4ri_mm_malloc: malloc returned NULL\n");
return NULL; /* unreachable */
}
else return newthing;
}
/**
* \brief Free wrapper.
*
* \param condemned Pointer.
*
* \todo Allow user to register free function.
*/
/* void m4ri_mm_free(void *condemned, ...); */
static inline void m4ri_mm_free(void *condemned, ...) {
#if __M4RI_USE_MM_MALLOC
_mm_free(condemned);
#else
free(condemned);
#endif
}
/// @cond INTERNAL
/*
* MSVC does not understand the restrict keyword
*/
#if defined (__GNUC__)
#define RESTRICT __restrict__
#else
#define RESTRICT
#endif
/*
* Macros for template expansion.
*/
#define __M4RI_TEMPLATE_EXPAND0(x,y) x ## _ ## y
#define __M4RI_TEMPLATE_EXPAND1(x,y) __M4RI_TEMPLATE_EXPAND0(x,y)
#define __M4RI_TEMPLATE_NAME(fun) __M4RI_TEMPLATE_EXPAND1(fun, N)
//// @endcond
#endif // M4RI_MISC_H