cloud-sat/cal.py

285 lines
11 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding: UTF-8 -*-
from multiprocessing import set_forkserver_preload
import os
import os.path
from posixpath import split
from random import sample
import re
import shutil
from time import monotonic, sleep
from tokenize import Number
# global limit
CUTOFF = 3600
PUNISH = 2 #PAR2
MEMS_MAX = 61440 # 60G
class states(object):
res = "unknown"
time = CUTOFF*PUNISH
mems = MEMS_MAX
mono = False # only this one can solve
best = False # show the best performance
ls_time = 0 # LS_time
class solver(object):
def __init__(self, res_dir, name):
self.res_dir = res_dir # save the results files
self.print_name = name # names want to show
self.datas = dict() # datas[ins] save the instances
def reset(self):
# SAT-ins UNSAT-ins solved-ins all-ins
self.sat_num = self.unsat_num = self.solved_num = self.all_num = 0
self.avg_sat_time = self.avg_unsat_time = self.avg_solved_time = self.avg_all_time = 0.0
self.PAR_sat_time = self.PAR_unsat_time = self.PAR_solved_time = self.PAR_all_time = 0.0
self.mono_num = 0
self.best_num = 0
def cal_soln(self, ins_name):
self.all_num += 1
state = self.datas[ins_name]
if(self.datas[ins_name].time > CUTOFF):
self.datas[ins_name] = states()
if(state.res=="sat"):
self.sat_num += 1
self.solved_num += 1
self.avg_sat_time += state.time
self.avg_solved_time += state.time
self.avg_all_time += state.time
self.PAR_sat_time += state.time
self.PAR_solved_time += state.time
self.PAR_all_time += state.time
elif(state.res=="unsat"):
self.unsat_num += 1
self.solved_num += 1
self.avg_unsat_time += state.time
self.avg_solved_time += state.time
self.avg_all_time += state.time
self.PAR_unsat_time += state.time
self.PAR_solved_time += state.time
self.PAR_all_time += state.time
else:
self.avg_all_time += CUTOFF
self.PAR_all_time += CUTOFF * PUNISH
def deal_avg(self):
if(self.sat_num>0):
self.avg_sat_time /= self.sat_num
self.PAR_sat_time /= self.sat_num
if(self.unsat_num>0):
self.avg_unsat_time /= self.unsat_num
self.PAR_unsat_time /= self.unsat_num
if(self.solved_num>0):
self.avg_solved_time /= self.solved_num
self.PAR_solved_time /= self.solved_num
if(self.all_num>0):
self.avg_all_time /= self.all_num
self.PAR_all_time /= self.all_num
def to_string(self, state):
line = ""
line += str(state.res) + " "
line += str(round(state.time,2))
if state.mono:
line += "[M]"
elif state.best:
line += "[B]"
# if (state.byCDCL):
# line += "{C}"
# elif(state.byLS):
# line += "{L}"
line += str()
return line.ljust(18)
return super().to_string(state)
class solver_SAT_standard_gnomon(solver):
def cal_soln(self, ins_name):
if(not ins_name in self.datas):
self.datas[ins_name] = states()
real_file_path = self.res_dir + "/" + ins_name
fstr = open(real_file_path, "r").read()
if(not len(re.findall(r"s\s+UNSATISFIABLE", fstr))==0):
self.datas[ins_name].res = "unsat"
elif(not len(re.findall(r"s\s+SATISFIABLE", fstr))==0):
self.datas[ins_name].res = "sat"
if(not self.datas[ins_name].res == "unknown"):
timestr = re.findall(r"real\s+(\d+\.\d+)", fstr)[-1]
# timestr = re.findall(r"real.*m.*s", fstr)[-1]
# minute = int(timestr.split('m')[0].split()[-1])
# second = float(timestr.split('m')[-1].split('s')[0])
self.datas[ins_name].time = float(timestr)
if (self.datas[ins_name].time > CUTOFF*PUNISH):
self.datas[ins_name].res="unknown"
# confstr = re.findall(r"c conflicts:.*per second", fstr)[-1]
# self.datas[ins_name].time = int(confstr.split()[-4])
return super().cal_soln(ins_name)
def to_string(self, state):
return super().to_string(state)
SOLVER_LEN = 20
SAMPLE_LEN = 20
NUMBER_LEN = 8
print_title = True
class calculater(object):
solvers = []
sample_dirs = [] # sample dirs, [sample_dir, sample_name]s
def __init__(self, solvers, sample_dirs):
self.solvers = solvers
self.sample_dirs = sample_dirs
def __show_in_mark_down(self, samp_name):
global print_title
if(print_title):
print_title = False
title = "| sample".ljust(SAMPLE_LEN+2)
title += " | solver".ljust(SOLVER_LEN+3)
title += " | #SAT".ljust(NUMBER_LEN+3)
title += " | avg_t".ljust(NUMBER_LEN+3)
title += " | #UNSAT".ljust(NUMBER_LEN+3)
title += " | avg_t".ljust(NUMBER_LEN+3)
title += " | #ALL".ljust(NUMBER_LEN+3)
title += " | PAR2_t".ljust(NUMBER_LEN+3)
title += " | best".ljust(NUMBER_LEN+3)
title += " | mono".ljust(NUMBER_LEN+3)
title += " | s".ljust(NUMBER_LEN+3)
title += " | TIME".ljust(NUMBER_LEN+3)
title += " |"
print(title)
split = "| " + '-'*(SAMPLE_LEN)
split += " | " + '-'*(SOLVER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " | " + '-'*(NUMBER_LEN)
split += " |"
self.split_line = split
print(split)
#sota = self.solvers[0].solved_num * self.solvers[0].PAR_solved_time + CUTOFF * PUNISH * (self.sample_ins_ct - self.solvers[0].solved_num)
sota = self.solvers[0].PAR_all_time * self.sample_ins_ct
for slv in self.solvers:
s = (sota - CUTOFF * PUNISH * (self.sample_ins_ct - slv.solved_num)) / (slv.solved_num * slv.PAR_solved_time)
time = slv.solved_num * slv.PAR_solved_time + CUTOFF * PUNISH * (self.sample_ins_ct - slv.solved_num) / 1.5
time = time / self.sample_ins_ct
line = "| " + (samp_name + "("+str(self.sample_ins_ct) + ")").ljust(SAMPLE_LEN)
line += " | " + slv.print_name.ljust(SOLVER_LEN)
line += " | " + str(slv.sat_num).ljust(NUMBER_LEN)
line += " | " + str(round(slv.avg_sat_time,2)).ljust(NUMBER_LEN)
line += " | " + str(slv.unsat_num).ljust(NUMBER_LEN)
line += " | " + str(round(slv.avg_unsat_time,2)).ljust(NUMBER_LEN)
line += " | " + str(slv.solved_num).ljust(NUMBER_LEN)
line += " | " + str(round(slv.PAR_all_time,2)).ljust(NUMBER_LEN)
line += " | " + str(slv.best_num).ljust(NUMBER_LEN)
line += " | " + str(slv.mono_num).ljust(NUMBER_LEN)
line += " | " + str(round(s,2)).ljust(NUMBER_LEN)
line += " | " + str(round(time,2)).ljust(NUMBER_LEN)
line += " |"
print(line)
def cal_and_show(self):
for sample in self.sample_dirs:
title_line = ""
for slv in self.solvers:
title_line += slv.print_name.ljust(18)
print(title_line)
samp_dir = sample[0]
samp_name = sample[1]
print_line_ct = 0
sample_ins_ct = 0
for slv in self.solvers:
slv.reset()
for ins_name in open(samp_dir):
sample_ins_ct += 1
ins_name = ins_name.strip()
best_time = CUTOFF*PUNISH
solved_ct = 0
for slv in self.solvers:
slv.cal_soln(ins_name)
best_time = min(slv.datas[ins_name].time, best_time)
if not slv.datas[ins_name].res == "unknown":
solved_ct += 1
if(not best_time == CUTOFF*PUNISH):
for slv in self.solvers:
if(slv.datas[ins_name].time == best_time):
slv.datas[ins_name].best = True
slv.best_num += 1
if(solved_ct == 1):
slv.datas[ins_name].mono = True
slv.mono_num += 1
line = ""
no_answer = True
answer_this = "unknown"
all_can_solve = True
have_diff_res = False
for slv in self.solvers:
stt = slv.datas[ins_name]
line += slv.to_string(stt)
if(not stt.res == "unknown"):
no_answer = False
answer_this = stt.res
elif(stt.res == "unknown"):
all_can_solve = False
line += ins_name
if(not all_can_solve and not no_answer):
have_diff_res = True
# if(True):
if(False):
# if(no_answer):
# if(all_can_solve):
# if(have_diff_res):
# if(have_diff_res and answer_this == "sat"):
# if(self.solvers[-2].datas[ins_name].res != self.solvers[-1].datas[ins_name].res):
print_line_ct += 1
print(line)
self.sample_ins_ct = sample_ins_ct
for slv in self.solvers:
slv.deal_avg()
self.__show_in_mark_down(samp_name)
if(print_line_ct>0):
print("print line ct = ", print_line_ct)
else:
print(self.split_line)
def gen_samples(dir):
samples = []
for root, dirs, files in os.walk(dir):
for file in files:
sample_name = file.strip(".txt")
sample_dir = os.path.join(root, file)
# print(sample_dir, sample_name)
samples.append([sample_dir, sample_name])
return samples
if __name__ == "__main__":
solvers = []
solvers.append(solver_SAT_standard_gnomon("./result","light-cloud-circle"))
# solvers.append(solver_SAT_standard_gnomon("/pub/data/chenzh/res/huawei_sat/kissat-mab","origin-mab"))
# solvers.append(solver_SAT_standard_gnomon("/pub/data/chenzh/res/huawei_simp/kissat-mab","preprocess-mab"))
samples = []
samples.append(["/pub/data/chenzh/data/sat2022/all.txt", "dump_sat"])
clt = calculater(solvers, samples)
clt.cal_and_show()